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Abstract 

The first part  of this two-part  paper presents a general theory of dissipative 
dynamical systems. The mathematical model used is a state space model and 
dissipativeness is defined in terms of an inequality involving the storage function 
and the supply function. It  is shown that the storage function satisfies an a p r i o r i  

inequality: it is bounded from below by the available storage and f rom above by 
the required supply. The available storage is the amount  of internal storage which 
may be recovered f rom the system and the required supply is the amount  of supply 
which has to be delivered to the system in order to transfer it f rom the state of 
minimum storage to a given state. These functions are themselves possible storage 
functions, i.e., they satisfy the dissipation inequality. Moreover, since the class of 
possible storage functions forms a convex set, there is thus a continuum of possible 
storage functions ranging from its lower bound, the available storage, to its upper 
bound, the required supply. The paper  then considers interconnected systems. It  
is shown that dissipative systems which are interconnected via a neutral inter- 
connection constraint define a new dissipative dynamical system and that the sum 
of the storage functions of the individual subsystems is a storage function for the 
interconnected system. The stability of dissipative systems is then investigated 
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and it is shown that a point in the state space where the storage function attains 
a local minimum defines a stable equilibrium and that the storage function is a 
Lyapunov function for this equilibrium. These results are then applied to several 
examples. These concepts and results will be applied to linear dynamical systems 
with quadratic supply rates in the second part of this paper. 

1. Introduction 

Dissipative systems are of particular interest in engineering and physics. The 
dissipation hypothesis, which distinguishes such systems from general dynamical 
systems, results in a fundamental constraint on their dynamic behavior. Typical 
examples of dissipative systems are electrical networks in which part of the elec- 
trical energy is dissipated in the resistors in the form of heat, viscoelastic systems 
in which viscous friction is responsible for a similar loss in energy, and thermo- 
dynamic systems for which the second law postulates a form of dissipation leading 
to an increase in entropy. 

In the first part of this paper we hope to provide an axiomatic foundation for a 
general theory of dissipative systems. In the course of doing this we examine the 
concepts of an internal storage function and of a dissipation function. 

There will be an obvious search for generality in the theoretical discussion of 
the first part of this paper. This stems from a belief that in studying specialized 
classes of dynamical systems it is important to keep the axioms separated. Such a 
procedure has more than just an aesthetic appeal: it allows one to pinpoint clearly 
what is a consequence of what. 

My interest in dissipative systems stems from their implications on the stability 
of control systems. One of the main results in stability theory states that a feedback 
system consisting of a passive dynamical system in both the forward and the feed- 
back loop is itself passive and thus stable. Moreover, the sum of the stored 
"energies" in the forward loop and in the feedback loop is a Lyapunov function 
for the closed loop system. The existence of a stored energy function is rather 
simple to eastablish since it is equivalent to the passivity assumption. It was in 
computing this stored energy function that we encountered some difficulties. It 
became clear that there is no uniqueness of the stored energy function, rather that 
there is a range of possible stored energy functions for a system with a prescribed 
input/output behavior. 

In this paper these concepts are studied in detail and generalized. The termi- 
nology dissipative will be used as a generalization of the concept of passivity and 
storage function as a generalization of the concept of stored energy or entropy. 

One of the main results obtained in this paper is that the storage function is as 
a rule not uniquely defined by the input/output behavior. It is shown that the 
storage function associated with a dissipative dynamical system satisfies an a priori 
inequality: it is bounded from below by the available storage and from above by 
the required supply. Moreover, and possibly more important, there is a continuum 
of possible storage functions between these upper and lower bounds. 

This situation has important consequences. To give but one example, consider 
the familiar area of linear viscoelasticity. This is a typical example of a situation 
where the internal physical mechanism which is responsible for a stress/strain 
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relationship is admittedly not completely understood. For many applications, one 
is, however, satisfied with an input/output description in terms of a relaxation 
function which may be obtained experimentally. Such an input/output description 
has, in fact, become the starting point of a general approach to the description of 
materials with memory. Nevertheless, the literature insists on postulating the 
knowledge of an internal energy function. It should be realized that this destroys 
some of the advantages of working with an input/output description since this 
knowledge of an internal energy function cannot be obtained from the relaxation 
function but requires additional information about the physical process. (In the 
present example one may often circumvent this difficulty by determining the heat 
production as well as the stress/strain relation, but this problem remains very 
fundamental in the context of thermodynamic systems where it is unclear what is 
being dissipated while the entropy increases.) 

There are several methods for further reducing the number of possible storage 
functions. One rather obvious method is to consider a system as an interconnection 
of dissipative subsystems. Another possibility is by assuming additional qualitative 
internal properties for the system. A typical example is by postulating internal 
symmetry conditions as the Onsager-Casimir reciprocal relations. These will be 
examined in the second part of the paper. 

We shall use the state space formalism for representing systems with memory. 
This feature is felt to be essential and the absence of the state space formalism in 
continuum mechanics and thermodynamics is somewhat disturbing. It is indeed 
customary in these areas to assume that the functionals appearing in the constitu- 
tive equations of materials with memory may depend on the entire past history 
(see for example [1] and [2]). This approach, however, does not recognize the idea 
of "equivalent histories": two histories are said to be equivalent if they bring the 
system into the same state and are thus indistinguishable under future experiments. 
Hence, one should constrain a priori the constitutive relations of any internal func- 
tion as, for example, the internal energy or the entropy to take on the same value 
for equivalent (but not necessarily identical) histories. The state space formalism 
is the natural way for incorporating this constraint. There has, in fact, been some 
recent work by OlqAW [3, 4] which deals with the construction of state space models 
for continuum systems. 

We consider this paper as a contribution to mathematical system theory. The 
methods employed are those which have grown out of the modem developments 
of control theory; some of the auxiliary results, particularly in the second part of 
the paper, are drawn from network synthesis and optimal control theory. The 
implications of the results obtained and the methods used ought to be of interest 
to physicists, in particular those concerned with continuum mechanics and thermo- 
dynamics. We have tried to make the paper self-contained by being as explicit as 
possible whenever known results are being used. 

2. Dynamical Systems 
A dynamical system is viewed as an abstract mathematical object which maps 

inputs (causes, excitations) into outputs (effects, responses) via a set of intermediate 
variables, the state, which summarizes the influence of past inputs. The following 

22* 
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lengthy definition is concerned with continuous systems (the time-interval of 
definition is the real line). In order to avoid unnecessary complications mainly of 
a notational nature, we will restrict ourselves to stationary (i.e., time-invariant, 
nonaging) systems. The time-varying case is briefly discussed in Section 6. 

Definition 1. A (continuous stationary) dynamical system Z is defined through 
the sets U, q/, Y, ~/, X and the maps ~ and r. These satisfy the following axioms: 

(i) q/is called the input space and consists of a class of U-valued functions on* R. 
The set U is called the set of input values. The space q/is assumed to be closed under 
the shift operator, i.e., if u ~ q / t h e n  the function ur defined by ur(t)=u(t+T) 
also belongs to q / f o r  any T~R; 

(ii) r  called the output space and consists of a class of Y-valued functions 
on R. The set Y is called the set of output values. The space ~/is  assumed to be 
closed under the shift operator, i.e., if y 6 ~ / t h e n  the function Yr defined by 
yr( t )=y( t+T)  belongs to ~ / fo r  any T6R; 

(iii) X is an abstract set called the state space; 

(iv) ~b is called the state transition function and is a map from R + x X x q/ 
into X. It obeys the following axioms: 

(iv)a (consistency): c~(to, to, xo, u)=xo for all to6R, Xo6X, and u~q/; 

(iv)b (determinism): qb(h, to, Xo, ul)=qb(tl ,  to, Xo, u2) for all (tx, to)eR +, 
Xo e X, and u 1, u2 ~ ~ satisfying u l (t) = uz (t) for to _-< t__< t l; 

(iv)r (semi-group property): ~b(t2, to, Xo, u)=~( t2 ,  tl, ~b(tl, to, Xo, u), u) for 
all to <=h <=tz, xoeX, and u~a//; 

(iv)d (stationarity): ~( t l+T,  to+T, Xo, uT)=~( t l ,  to, Xo, u ) f o r  all 
(tl, to)~R +, TeR, XoeX, and u, uTeq/related by ur(t)=u(t+ T) for 
all t~R; 

(v) r is called the read-out function and is a map from X x  U into Y; 

(vi) the Y-valued function r(qb(t, to, Xo, u), u(t)) defined for t>=to is, for all 
Xo~X, to~R and u ~ ,  the restriction to [to, oo) of a function y ~ / .  This means 
that there exists an element y ~ r  that y(t)=r(c~(t, to, Xo, u), u(t)) for t>=to. 

A dynamical system thus generates outputs from inputs as follows: the system 
starts off in some initial state x0 at time to and an input u is applied to it. Then the 
state at time tl is given by ~b(tx, to, Xo, u). The output resulting from this experi- 
ment is given by y(t)= r(qb (t, to, Xo, u), u(t)) and is defined for t_>_ to. It is important 
(for applications to systems described by partial differential equations for example) 
to realize that state transitions, and thus outputs, need only be defined in the 
forward time direction. 

We call ~(tl, to, Xo, u) "the state at time t~ reached from the initial state x o at 
time to by applying the input u to the dynamical system ~" and r(x, u) "the output 

* We are using the following notation: R = the real numbers; R n = n-dimensional Euclidean 
space; R + = the nonnegative real numbers; R + = the causal triangular sector of R 2 defined by 
R + m {(t2,  h) e R 2 [ t 2 ~> t I };  R e = the extended real number system = { -- oo } U R U { + oO }. 
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due to the presence of state x and the input-value u". We will denote the function 
r(~b (t, to, Xo, u), u (t)) defined for t >= to unambiguously by y (to, x0, u). 

Definition 1 is precise and yet very general. By a suitable choice of the state 
space, the state transition function, and the read-out function, it includes all 
common deterministic models used in classical physics, in circuit theory, and 
control theory. 

The axiom of determinism is the crucial one. It expresses at the same time a 
fundamental property of the state and an important restriction on the class of 
systems which qualify for dynamical systems in the above sense. It states that the 
initial state summarizes the effect of past inputs in the sense that for future 
responses it does not matter how the system was brought into this state; it also 
implies that the state and thus the output before some time are not influenced by 
the values of the input after that time. We are hence in effect restricting our atten- 
tion to systems in which future inputs do not affect past and present outputs. The 
idea is simple: since all experimental evidence indicates that physical systems 
indeed satisfy this property of causality, we require this to be preserved in the 
model. 

It should be emphasized that the read-out function is required to be a memory- 
less map in the sense that the output only depends on the present value of the 
state and the input. All dynamical effects (i. e., those phenomena involving memory) 
are required to be taken care of by the state. 

The above definition is commonly used in mathematical system theory (see, for 
instance, references [5, 6]). Although physicists have been groping for a similar 
concept for a long time, it is only for systems in which the input space consists 
of only one element (i. e., the autonomous dynamical systems of classical mechanics) 
that such mathematical structures have been introduced in a formal way. In the 
framework of Definition 1 the state at every moment completely describes the 
present situation. It is, however, impossible to deduce a priori, in physical terms, 
what will be the state. This, indeed, is a very difficult problem even for relatively 
simple systems, and it appears to be the cause for much of the reluctance of 
introducing this concept in physics. The approach which has been taken for 
describing materials with memory is to allow the outputs to be a function of the 
whole past history of the input. This is particularly prominent in the pioneering 
work of TRtJESDELL, COLEMAN, and NOLL [1,2]. Another approach is that of ONAT 
[3, 4] where the state is constructed in terms of observables. These two extreme 
points of view are particular cases of Definition 1, but we see no compelling reason 
to adhere to either of them. The first approach does not recognize the idea of 
equivalent histories, and the second approach will lead to difficulties when we con- 
sider isolated systems for example. 

In view of this dichotomy, it would appear to be useful to allow some time 
discussing these state space concepts further. Let us take the point of view that all 
the information the experimenter may obtain about a system is a table of input 
functions in r versus the corresponding output functions in ~ The so-called 
problem of realization is to define a state space X and the functions ~b and r in such 
a way that the resulting dynamical system in state space form generates the given 
input]output pairs by a suitable choice for the initial state in each tabulated ex- 
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periment. This problem has attracted a great deal of attention in the literature. 
Both the questions, "Does a state space realization exist?" and "What  are the 
maps ~b and r ?",  have been examined. For the first question we mention the work 
of ZADEn [7] and for the second question the work by YOULA [8] and, especially, 
KALMAN [5], among others. The existence question essentially only requires a 
determinism postulate on the input/output pairs. The construction of ~b and r is 
understandably much more intricate but has been satisfactorily resolved for large 
classes of systems. In particular, there exists a very elegant solution to this problem 
for linear systems with a finite number of degrees of freedom. This material is 
considered to be of prime importance and can be found in a number of recent 
texts (e.g., [10]). 

We now consider an important particular case of this realization problem. 
Assume that Fis  a given map from q/into q/satisfying the postulate of determinism 
which states that inputs u~, u2 e q/ satisfying u~ (t)= u2 (t) for t <  to yield outputs 
yx=Ful and yz=Fu2 which similarly satisfy y~(t)=y2(t) for t<to. Assume in 
addition that this map is stationary i.e., two inputs ut, u2eq/related by ul ( t)= 
u2 (t + T) yield outputs Yl = Ful and Y2 = Fu2 which are similarly related by y~ (t) = 
Y2 (t+T). The question is to realize F by a dynamical system in state space form. 
The solution to this problem is by no means unique. One possibility is to consider 
the function f :  R+-~ U defined by f(s)=u(t-s)  for s > 0  as the state at time t 
resulting from the input u. It is clear how the state transition function and the 
read-out function may be defined from here [11]. This state space realization is of 
course completely inefficient: in trying to store sufficient information about the 
past inputs, we decided to store the whole past input. The most efficient and 
natural state space realization of F is the one obtained by considering as the state 
at time t the equivalence class of those inputs up to time t which yield the same 
output after time t regardless of how the input is continued after time t. More 
specifically, in this realization we start with the space of functions f :  R+-~ U 
satisfying f(s)= u (-s),  s> O, for some u eq/. We then group these functions into 
equivalence classes by letting f l  "~f2 if y~ =Fu~, and Y2 =Fu2 satisfy Yl (t)=y2(t) 
for t >  0 whenever ul ( -  t) = f l  (t), u2 ( -  t) =f2 (t), and ul (t) = u2 (t) for t >  0. The 
latter realization is sometimes called a "minimal realization" and plays a central 
role in control theory [5, 10]. A similar idea has been proposed by ONAT [3, 4] in 
a restricted context. 

The point of view taken in this paper is that the state space realization is given, 
i.e., it has been inferred from previous considerations what the state space is. 
We do not demand minimality since, in our opinion, there is no compelling reason 
for doing so: minimality is very much a function of the class of experiments and 
observations which are allowed, is sensitive to modelling, and is not necessarily 
a good physical assumption. Neither do we adhere to the idea that the state is the 
whole past input since this point of view leads to nonsensical situations. Consider 
for example an electrical RLC network which has a given set of charges on the 
C's and fluxes through the L's. Does it make sense to allow the stored energy of 
such a system to depend on exactly how these charges and fluxes came about? 
The whole question of what the state space of a physical system is requires much 
consideration. In this paper we have taken the easy way out by assuming that this 
has already been decided. 
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3 .  D i s s i p a t i v e  D y n a m i c a l  S y s t e m s  

In this section the concepts, which will be the basis for the further developments, 
are introduced. Assume that a dynamical system 27 is given together with a real- 
valued function w defined on U • Y. This function will be called the supply rate. 
We assume that for any (tl, to)~R~, u~ U, andy~ Y, the function w(t)= w(u(t),y(t)) 

t~ 

satisfies* ~ [w(t)l dt< co, i.e., w is locally integrable. 
to 

Definition 2. A dynamical system Z with supply rate w is said to be dissipative 
if there exists a nonnegative function S: X ~  R +, called the storage function, such 
that for all (t~, to)eR +, xoeX, and ue U, 

t l  

S(xo)+ ~w(t)dt> S(xl) 
to 

where xl = ~b(tl, to, x0, u) and w(t)=w(u(t), y(t)), with y=y(to, Xo, u). 

The above inequality will be called the dissipation inequality. Note that 
w (t) dt >_ 0 with ~ indicating that the dynamical system is taken from a particular 

initial state to the same terminal state along some path in state space. This con- 
dition is in itself inadequate as a definition for dissipativeness but dynamical 
systems which are dissipative in such cyclic motions only are of independent 
interest. 

The approach taken here proceeds from the knowledge, from physical con- 
siderations, that the dynamical system is dissipative and thus that the storage 
function exists. The fact that this storage function is "def ined" via an inequality 
requires further analysis. Central in this analysis is the question: " I n  how far is S 
defined by the dissipation inequality ?"  (The question is not so much "Does a 
storage function exist ?"  but rather "Wha t  can it be ?") 

A crucial role will be played in the sequel by a quantity termed the available 
storage: it is the maximum amount of storage which may at any time have been 
extracted from a dynamical system. The notion of available storage is a generaliza- 
tion of the concept of "available energy" [1 l, 12, 1 3] studied in control theory and 
of "recoverable work" encountered in the theory of viscoelasticity [14, 15]. 

D e f i n i t i o n  3. The available storage, Sa, of a dynamical system 27 with supply 
rate is the function from X into R e defined by 

t t  

SQ(x) = sup - ~ w(t) d t 
x'-* 0 

tl>=O 

where the notation x ~ denotes the supremum over all motions starting in state x 
at time 0 and where the supremum is taken over all u~q/. 

The available storage is an essential function in determining whether or not a 
system is dissipative. This is shown in the following theorem: 

* The shorthand notation w(t)for w(u(t), y(t))will be used whenever it is obvious from 
the context what x o, t o, and u are. 
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Theorem 1. The available storage, So, is finite for all x e X  if and only if ~, ts 
dissipative. Moreover, 0 <= Sa < S for dissipative dynamical systems and S~ is itself a 
possible storage function. 

Proof. Assume first that So < oo: it will be shown that 27 is then dissipative. 
It suffices therefore to show that So is a possible storage function. Notice that 
So>0 since So(x) is the supremum over a set of numbers which contains the zero 

t l  

element (tl---0). Consider now the quantity So(xo)+ S w(t)dt. We have to show 
to 

that this quantity is not less than So(x1) whenever w is evaluated along a trajectory 
generated by an input u which transfers the state from Xo at to to xl at t~. The proof 
of this is quite simple although writing out the details is somewhat laborious. The 
idea is the following: in extracting the available storage from 27 when it is in state 
x o we could first take 27 along the path generated by u, thus transferring 27 to xt,  
and then extract the available storage with 27 in state x~. This combined process is 
deafly a suboptimal procedure for extracting the storage originally present with 27 
in state Xo. Formalizing this idea immediately leads to the desired dissipation 
inequality for So. Assume next that 27 is dissipative. Then 

which shows that 

t l  

S(xo)+ ~ w(t) dt>-_ S(xl)>-_ 0 
to 

1! 

S (Xo) > sup - j" w (t) d t = S~ (Xo). 
XO "~ 0 
t ~ O  

Hence So<oO as claimed. This ends the proof of Theorem 1. l/ 

Theorem 1 gives a method which in theory may be used to verify whether or 
not a dynamical system is dissipative and this procedure does not require knowl- 
edge of the storage functions. In this sense it is an input/output test. Note that the 
theorem only states that the available storage may be the storage function. Usually 
it will not be the actual storage function. In fact, under certain additional assump- 
tions (e.g., the Onsager-Casimir reciprocal relations) it may be shown that it will 
not be the actual storage function. This fact should be kept in mind when inter- 
preting the results of [12, 14, 15]. A dynamical system which has the available 
storage as its actual storage function has the interesting (and unusual) property 
that all of its internal storage is available to the outside via its external terminals. 

It is convenient to introduce at this point the concept of reachability. This 
notion is related to controllability and plays a central role in mathematical 
systems theory. 

Definition 4. The state space of the dynamical system 2~ is said to be reachable 
from x_ 1 if for any x e X  there exists a t_ 1 < 0  and uEq/such that 

x=r 

It is said to be controllable to x~ if for any x e X  there exists a tl > 0 and a u~ q/such 
that x~ = q~(t~, 0, x, u). 
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Theorem 1 emphasizes what happens when the system starts off in a particular 
state. One may similarly examine what happens when the system ends up in a 
particular state. We will therefore introduce the concept of required supply. This 
is done by letting the system start in a given state and by bringing it to its present 
state in the most efficient manner, i.e., by using no more supply from the outside 
than is absolutely necessary. The notion of required supply has been introduced 
in [11]. Although one could choose any point in state space as the initial state, it 
is most logical to assume that the system starts in a state of minimum storage. 

Assumption. It will be assumed that there exists a point x*~X  such that 
S(x*) = min x S(x) and that the storage function S has been normalized to S(x*)= O. 

Definition 5. The required supply, S ,  of a dissipative dynamical system 
with supply rate w is the function from X into R e defined by 

0 

S,(x)= inf ~ w(t)dt  
X*"*X t - 1 

t - l < - - O  

where the notation inf denotes* the infimum over all u ~  and t_ 1 ~ 0  such that 
x * - ~ x  

t - t ~ O  

x=r t- l ,  x*, u). 

Theorem 2. (i) Assume that the state space of Z is reachable from x_ 1. Then 
is dissipative i f  and only i f  there exists a constant K such that 

Moreover, 

0 

inf S w ( t ) d t > K  
x - 1 "* x t - I  
t-l_~O 

for all x~X. 

o 

Sa(x_l)+ inf ~ w(t)dt  
X _ I ' ~ X  t _  1 
t-~<_O 

is a possible storage function. 

(ii) Let 7, be a dissipative dynamical system and assume that S(x*)=O. Then 
S,(x*)=O and O< Sa< S < Sr. Moreover, i f  the state space ~ is reachable from x* 
then Sr < oo and the required supply S~ is a possible storage function. 

Proof. (i) By reachability and Theorem I we see that Z is dissipative if and only 
if So (x_ 1)< oo. Any K <  - S a  (x_ 1) will thus yield the inequality in part (i) of the 
theorem statement. It remains to be shown that 

0 

S~(x-1)+ inf ~ w(t)dt  
x - l ~ x  t - i  
1 - 1 < 0  

is a possible storage function. This function is clearly nonnegative. To prove that 
it satisfies the dissipation inequality, consider the following idea: in taking the 
system from x_~ to xl at q ,  we can first take it to Xo at to while minimizing the 
supply and then take it from x o at to to x~ at tl along the path for which we are to 

* This  nota t ion ,  a long  with the  similar  one  in t roduced in Def in i t ion  3, will be used  th roughou t .  
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demonstrate the dissipation inequality. This results in a suboptimal policy for 
taking the system to xl and the formalization of this procedure leads to the 
desired dissipation inequality. 

(ii) That S,(x*) =0  is obvious. Moreover, any ueq/resulting in a transfer from 
o 

x* at t-1 to x at 0 satisfies S(x)< S w(t)dt by the dissipation inequality. The 
t - I  

inequality S,(x)>S(x) follows by taking the infimum at the right-hand side. 
Assume now that the state space of 2; is reachable. Then clearly Sr < oo. It remains 
to be shown that S, is a possible storage function. This, however, follows from (i). II 

It is an immediate consequence of the normalization S(x*)=0 that for a 
t, 

dissipative system any motion starting in x* at to satisfies S w(t)dt>O for all 
t0 

u e q / a n d  tl > t  0. Thus the net supply flow is into the system. This idea has been 
proposed [16, 17, 18, 19] as a definition of passivity. It has the advantage of being 
an input/output concept which does not involve introduction of state space 
notions. However implicit in this approach is the fact that one knows the state of 
minimum internal storage. 

Note that the required supply is in general a function of S and x*. Usually, 
however, the point of minimum storage is a unique a priori known equilibrium 
point which may thus be shown to be independent of S and this ambiguity does 
not arise. 

Remarks. 1. Under the assumptions of reachability from x_ ~ and control- 
lability to xl we always have the following inequalities for a dissipative system: 

t l  O 

s ( x 0 + s u p  - $w(Odt<=S(x)<-_S(x_l)+ inf ~ w(t)dt. 
X-'~XI 0 X -  I -~X t -  I 
t l > 0  t - l < 0  

Note however that the lower bound on S thus obtained is itself in general not a 
possible storage function because it need not be nonnegative. 

2. Often a state space model of a dynamical system is constructed on the basis 
of an input/output description. Particularly important realizations are the minimal 
realization mentioned earlier and the realization in which the state is the whole 
past history. It is quite simple to associate a storage function with these realizations 
when one has determined a storage function on a particular state space X. For 
example, defining S(u(_ oo, o))= S(x(O)) leads to a storage function on a state space 
which keeps track of the whole past input history. The available storage function 
of these realizations will in fact agree on that part of the state space which is 
reachable along some past history. Assuming that for t sufficiently small every 
element of og is equal to a fixed constant u* (typically the zero element of some 

0 

vector space) such that w(u*, y*)=0  and that S w(u(t), y(t)) dt exists and is 

nonnegative (thus the state at " t = -  oo" is assumed to be the state of minimal 
storage), then we may actually also evaluate the required supply for the realization 
in which the state keeps track of the whole past history. This does not require 

0 

any infimization and is simply equal to S w(u(t), y(t)) dt. It may in principle 
- o o  
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be different for every history. Moreover, the dissipation inequality holds with 
equafity for this storage function. (This fact does not conflict with Theorem 4 
since this realization will never be controllable.) 

If one works with the minimal realization then one may associate a storage 
function by defining S(~min)= S(x) where x is a state in the equivalence class 5rain. 
After elimination of the non-reachable states, one thus divides the state space X 
into equivalence classes and defines the storage to be the storage of an arbitrary 
element in this class. The available storage functions of these realizations again 
agrees on that part of the state space which is reachable along some past history. 
The required storage may now take on more values in X than in Xmin. An interesting 
consequence of the above reasoning is that the notion of available storage is 
defined purely as an input/output concept for states which are reachable. Thus, 
taking equivalence classes as the state or the whole past history as the state 
leads to the same value for the available storage function. This reemphasizes the 
importance of Theorem 1 as an input/output test for dissipativeness. There is an 
interesting paper by DAY [33] which has used the concept of available storage 
(or "useful work"  as it is called in [33]) in setting up an axiomatic theory of 
thermodynamics. Although the technical details are quite different, the ideas 
exploited in that paper appear to be very much along the lines of those on which 
Theorem 1 is based. 

To summarize the above results, we have shown that the storage function of a 
dissipative dynamical system satisfies the a priori inequality Sa<S<S, ,  i.e., a 
dissipative system can supply to the outside only a fraction of what it has stored 
and can store only a fraction of what has been supplied to it. The available storage 
always satisfies the dissipation inequality, as does the required supply for systems 
with a state space which is reachable from a point of minimum storage. (This show 
that the above inequality is the best of its type.) Of course not every function 
bounded by this a priori inequality will be a possible storage function. It appears 
to be difficult to state other general properties of the set of possible storage func- 
tions. One interesting property is its convexity: 

Theorem 3. The set of  possible storage functions of a dissipative dynamical 
system forms a convex set. Hence a S a + ( 1 - a )  S,, O<a_< 1, is a possible storage 
function for a dissipative dynamical system whose state space is reachable from x*. 

Proof. This theorem is an immediate consequence of the dissipation inequality. II 

The ultimate test for a theory of dissipative systems is whether or not there 
exists a (possibly idealized) "physical" system which realizes the input/output 
exchange process and which has the desired storage function. Such a synthesis 
program based on interconnecting ideal elements may in fact be carried out for 
linear systems with a finite number of degrees of freedom and quadratic supply 
functions. Some results in this direction will be indicated in Part II. 

We now proceed with a few remarks regarding the evaluation of the availablo 
storage and the required supply: 

(i) If the state of minimum storage x* is an equilibrium point corresponding 
to the constant input u* e q/(i. e., tk (t, O, x*, u*) = x* for all t > O) and if w (u*, y*) = O, 
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then 
0 

St(x)= lim inf S w(t)dt; 
t - l " * - - o O  X * ' 4 X  t - I  

(ii) If for all x e X  there exists a u~q/such that w(u, y)<O (i.e., the external 
termination may always be adjusted so that the supply flows out of the system), 
then 

t l  

So(x)= lim sup Sw(t)dt; 
t l - ~  X -~ 0 

(iii) The concept of required supply assumes that there exists a point x*~X 
such that S(x*)=m!nS(x).  There need however not be a point of minimum 

storage. One may then define Sr(x) by considering a sequence of states {x.} with 
lira S(x.)= inf  S(x) and define 

0 

S,(x)= limS,,,(x) where S,, .(x)= inf ~ w(t)dt. 
n-~ oo x n " * x  t - ! 

t - ~ _ O  

We now show how to treat conservative systems as particular cases of dissi- 
pative dynamical systems. 

Definition 6. A dissipative dynamical system Z with supply rate w and storage 
function S is said to be lossless if for all (tl, to)eR~, xo~X, and u~ql 

t l  

S(xo)+ Sw(t) d t=S(xO 
to 

where xl = ~b(tl, to, Xo, u). 
The following theorem is immediate: 

T h e o r e m  4. Let Z be a lossless dissipative dynamical system and assume that 
S(x*) = O. I f  the state space is reachable from x* and controllable to x*, then Sa = S~ 
and thus the storage function is unique and given by 

0 

S(x)= ~ w(t)dt 
t - I  

with any t_ 1 <=0 and uE~ such that x = ~b(O,t_l,x*,u), or 

t l  

S(x) = - ~ W(t) dt 
0 

with any t 1 >=0 and u ~  such that x*=~(t l ,  O, x, u). 

The condition Sa= S, which implies uniqueness of the storage function is in 
itself not sufficient to imply losslessness. We could call such systems quasi-lossless 
since they may be transferred between states without dissipation provided; how- 
ever, this transfer is executed optimally. An arbitrary transfer instead is expected 
to involve dissipation. 

An interesting property of dissipative dynamical systems is the following: 
t l  

(i) For dissipative dynamical systems with X(to)=X*, ~ w( t )k ( t )d t~O for all 
bounded functions k with k(t) ~ 0 and k (t) < o; to 
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(ii) For lossless dynamical systems with X(to)=X* and ~b(tt, to, x*, u)=x*, 
t l  

S w(t) k(t) dt>O for all bounded functions k with k(t)<0. 
to 

These inequalities formalize the idea that for a dissipative system with no initial 
storage the supply flows into the system before part of it is recovered whereas in 
addition all of it gets recovered in a lossless system. These expressions generalize 
similar inequalities obtained in [20, 21, 22]. 

We conclude this section with a discussion of the concept of a dissipation 
function. 

Definition 7. A real-valued function d: Xx U ~  R is said to be the dissipation 
rate of a dissipative dynamical system Z with supply rate w and storage function S 
if for all (h, to) ~R+, Xo eX, and u~@d 

t l  

S(xo)+ S (w(t)+ d(t)) dt= S(xt) 
to 

where xt =•(tl, to, Xo, 1./). 
It is clear that d being nonnegative implies dissipativeness. Moreover, since the 

dynamical system 27 is lossless with respect to the new supply rate (w + d) it follows 
that the dissipation rate d uniquely determines the storage function S provided 
the appropriate reachability and controllability conditions are satisfied. The con- 
verse, i.e., that dissipativeness implies the existence of a nonnegative dissipation 
rate is also the case under some technical smoothness conditions. The set of 
dissipation rate functions for a given dissipative system forms a convex set. 

Remarks. Note that if S(dp(t, O, x, u)) is differentiable at t=O for all x~X and 
u~q/, then the dissipation inequality is equivalent to 

u)_<w(r(x, u),.) 

for all x~X and usU where S denotes ff-~S(dp(t, O, x, u)) t=o" This definition is 

more standard but slightly less general than the one proposed here. The dissipation 
function d is then given by 

d - - S - w .  

4. Interconnected Systems 

The main result obtained in the previous section yields an a priori bound on 
the storage function of a dissipative dynamical system. Moreover these bounds 
themselves define possible storage functions and the storage function is thus 
uniquely determined by the dissipation inequality if and only if the required supply 
equals the available storage. This situation is the exception and as a rule there are 
consequently many possible storage functions. If we consider the implications of 
this result to physical systems which dissipate energy or to thermodynamic 
systems, then we conclude that experiments on a physical system will usually only 
give bounds on the stored energy function or on the entropy function. This result 
is unexpected in the sense that in classical physical systems this ambiguity does not 
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arise: we thus expect that the additional structural assumptions implicit in such 
systems will greatly reduce the number of possible storage functions and often 
render it unique. 

In this section we examine one such possibility: it will be shown that by 
considering a given dissipative system as an interconnection of dissipative sub- 
systems the number of possible storage functions is greatly reduced. Other quali- 
tative assumptions (linearity, reciprocity, etc.) on the system will be investigated 
in Part II. 

The idea of an interconnected system is actually quite simple, albeit somewhat 
difficult to formalize. We start with a collection of dynamical systems {~} where 
ranges over some given index set A. For simplicity we will assume that A is a 
finite set. More general interconnections involve the introduction of a measure 
on A which would take us somewhat astray. Each 2:~ is determined, as in Defini- 
tion 1, by a septuplet {U~, ~/~, Y~, ~/~, X~, r r~). We assume that the inputs and 
outputs of each dynamical system 2:~ are divided into two groups, i.e., 

u ~ = u : x u : ,  e ~ ~ @~=~/~x~/~, Y~=Y~xY~, and ~]~=~J~x~ 

when the superscripts e and i stand for the adjectives external and interconnecting. 

U i 
U e ~ ~ u ~ , l  

.~ Y/~I inter- 
connecting 

system 

y~ 

Fig. I. I|lustrating the concept of an interconnected system 

Next we introduce the notion of an interconnecting function which is simply a 
function* f :  ]-I (U~x Y~)~ V where V is some vector space, and of the inter- 

~ e A  

connection constraint which states that f (  YI (u~x Y~))=0: it is thus a relation 
~ e A  

between the instantaneous values of the inputs and the outputs. The idea of an 
interconnected system is illustrated in Figure 1 and indicates that the external 

i inputs u~ are given but that the interconnecting inputs u~ are to be determined 
implicitly. More precisely, given any u : ~  and x~eX~, ~eA, we may attempt to 
solve the implicit equations 

e i e f f (  ]-] (u'~(t) • ri~(r t o, x~(u~, u~)), (u~(t), u~ (t))))) = 0, t__> to, 
o~EA 

for some set of the functions u'~ecg~. This equation is of course not necessarily 
uniquely solvable and this fact needs to be assumed explicitly. Notice that only 

* The notation YI stands for the Cartesian set product. 
~ e A  
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the values of u~(t) for t > 0  enter in the equations. Hence we can only hope these 
equations determine u~ on the half line t > to. However it may be expected that 
under reasonable assumptions there will be a map from the set of states andexternal 
input values into the set of internal inputs and outputs which determines a solution 
to these equations. 

We will thus assume explicitly that the interconnected system, denoted by 
YI 2fJf, is well-posed in the sense that it defines unique functions ~b and r and 

~GA 

1-Ix • 
a~eA ~ A  

such that: 

(i) the septuplet { 1-I u~, ]-I q/Z, I-I Y~, l-] ~ ,  ~ x~, gb, r} defines a dynamical 
eteA ~ A  ~ A  areA a ~ A  

system in the sense of Definition 1 ; 

(ii) the function u~(t)=~k~(~(t, to, 1-I x~, 1-I u~, 1-I u~(t)) defined for t>to is 
~ A  ~ e A  areA 

the restriction to [t o, ~ )  of a function in ~{; 

(iii) ~b(t, to, 1-I x~, H u g =  YI ~b~(t, to, x~, (u~, u/)) with u~ as in (ii); 
~t~A ~tEA ~teA 

(iv) r ( I -  [ x~, I-[ u : )=  [ I  r:(x~, (u:, $~(I-I x~, [-I u:))); 
�9 ~A at~A Jz~A ~ A  ~EA 

Hu:))))=o. 
It is easy to verify that the above conditions formalize the intuitive conditions one 
expects a well-posed interconnected dynamical system to satisfy. Examples of 
interconnected systems will be given in Section 7. Note that although the inter- 
connected system may have many state space realizations we are insisting on 
using the one with state space the Cartesian product of the state spaces of the 
individual subsystems. This is indeed a natural thing to do since the interconnec- 
tion itself introduces no memory. 

We now introduce the concept of dissipation in this framework. Assume there- 
fore that each dynamical system 2:~ has associated with it an external supply rate, 
w~, defined on U~ • Y~ and an interconnecting supply rate, w~, defined on U~ • Y~. 

Definition 8. Consider the dynamical systems ~, with interconnecting 
supply rates w~-. Then the interconnection defined by the interconnection constraint 

f (  l--[ (u~ x y~)) = 0 is said to be neutral if all u7 and Y7 satisfying this equality yield 
~ A  

w' = o. 
r 

In terms of Figure 1, an interconnection is thus said to be neutral if the inter- 
connecting system itself is lossless with respect to the supply rate ~ w~. Thus the 

~t~A 

mere interconnection does not introduce any new supply or dissipation. One thus 
expects the dissipativeness of the interconnected system to be a consequence of 
the dissipativeness of the individual subsystems. That this is indeed the case is 
shown in the following theorem: 

Theorem 5. Let ~,~, o~A, be a collection of dissipative dynamical systems with 
supply rates w~= w~ + w~ and storage functions S~. Let f be a neutral interconnection 
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constraint. Then the interconnected system Z= rI E j f  is itself dissipative with 
arEA 

respect to the supply rate w = ~, w~ and S= ~ S~ is a storage function for Z. 
r areA 

Proof. Summing both sides of the inequality 

t !  

w',(t))dt> 
to 

over cteA and using the assumption ~ w~(t)=O leads to the desired dissipation 
inequality for 2~. [] ~,4 

The above theorem is intuitively obvious. Note however that by considering 
only storage functions which are additive in the sense that S( 1-I x,)= ~, S~(x~) one 

�9 e A  ~ e A  

obtains only part of the admissible storage functions for 2L It is easy to see that 
since the interconnection introduces additional constraints on theinputs u~ = (u~, u~-), 
we always have the inequality So <= ~ S~,a <= ~ S~,,<= St, with equality holding 

�9 e A  ~ A  

exceptionally. Thus one obtains a unique additive storage function for the inter- 
connected system if and only if S~. a = S~,r for each u~A. 

In many physical systems encountered in practice, e.g., in lumped electrical 
networks or in continuum systems, one may postulate a priori that the system is 
an interconnection of dissipative systems and use this qualitative property to 
describe the system in terms of "local" states, i. e., to take the state space X= I-[ X~ 

~t~A 

and furthermore to require that the storage function be of the type S( 1-[ x~)= 
ctEA 

~, S~(x~). This natural requirement on the storage function of a dissipative 
~t 

dynamical system which consists of a family of dissipative systems interconnected 
by means of a neutral interconnection serves to reduce greatly the number of 
possible storage functions. This requirement leads to a unique storage function 
whenever it is possible to regard Z as the interconnection of lossless systems with 
memory (capacitors and inductors, elastic systems) and a dissipative system 
without memory (resistors, friction elements). The lossless part possesses a unique 
storage function by Theorem 4 (under the additional hypothesis of reachability 
and controllability) whereas the dissipative part does not contribute to the storage 
since its state space is the empty set. The storage of the original system is thus 
given by the storage in the lossless subsystem and is consequently unique. 

In concluding this section we remark that the above method of considering 
interconnected systems is implicit in most treatments of dissipative systems. It is 
based on a qualitative assumption on the system (the idea of "simple" materials) 
and sometimes it results in the uniqueness of the storage function. This is however 
by no means always the case, and typical examples of areas where this nonunique- 
hess remains are linear viscoelasticity and the modern treatments of materials with 
memory in continuum mechanics and thermodynamics where the nonuniqueness 
of the storage function at the elementary particle level remains. In other words, 
one has to make more assumptions (or, equivalently, obtain more knowledge 
about the physics) in order to derive the storage function (internal energy, entropy, 
etc.) from the constitutive equations. 
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5. Stability 

In this section we examine the stability of dissipative systems. As is to be 
expected, only some technical conditions are required in order for dissipativeness 
to imply stability of an equilibrium at a local minimum of the storage function. 

We shall be concerned with the stability of an equilibrium state, and in order 
to make this study meaningful we need to isolate the system from its environment. 
Moreover, since stability is concerned with convergence the concept of a distance 
function on the state space needs to be introduced. Assume therefore that the 
following assumptions hold: 

(i) The system is isolated, i.e., the input space consists of one element only. 
In order to preserve stationarity we assume that this element is the con- 
stant function u(t)  = u*; 

(ii) x*~Xis  an equilibrium point, i.e., ~(t,  t o, x*, u*)=x* for all t>=to; 

(iii) X is a subset of a normed space and [[ T[ denotes its norm; 

(iv) ~b(t, to, Xo, u*) is continuous in t for t>~to; 

(v) w(u*, r(x, u*))__<0 for all x ~ X i n  a neighborhood of x*. 

The following stability definition is a standard one in the context of Lyapunov 
stability theory [23]: 

Definition 9. The equilibrium point x* of ~? is said to be stable if given e > 0  
there exists a 6(e)>0 such that [[ Xo-X*  ][ __<6 implies that 

[[ ~b(t, to, Xo, u * ) - x *  [[ __<e for all t>~t o. 

A very useful method for proving stability is by means of Lyapunov functions. 
The notion of a Lyapunov function is introduced in the following definition. 
It is a slight variation of the usual definition: 

Definition 10. A real-valued function V defined on the state space X of ,~ is 
said to be a Lyapunovfunction in the neighborhood of the equilibrium point x* if 

(i) V is continuous at x*; 

(ii) V attains a strong local minimum at x*, i.e., there exists a continuous 
function ~: R + - , R  + with ~(a)>0  for a > 0  such that V(x)-V(x*)>= 
~([[ x - x *  [[) for all x ~ X  in a neighborhood of x*; 

(iii) V is monotone nonincreasing along solutions in the neighborhood of x*, 
i. e., the real-valued function V(~b (t, t o, Xo, u*)) is monotone nonincreasing 
at t =  t o for all Xo in a neighborhood of x*. 

It is a standard exercise in (e, 6)-manipulations to show that an equilibrium point 
x * ~ X  is stable if there exists a Lyapunov function in the neighborhood of x*. 
This leads to the following theorem: 

Theorem 6. An equilibrium point x* ~ X of  a dissipative dynamical system ~ is 
stable i f  the storage function S is continuous and attains a strong local minimum 
at x*. Moreover S is a Lyapunov function in the neighborhood o f  x*. 

23 Arch. Rational Mech. Anal., Vol. 45 
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Proof. It suffices to show that S(~b (t, to, Xo, u*)) is monotone non-increasing 
at t=to if II xo-x* II is sufficiently small. By the dissipation inequality S(dp(t, to, 
Xo, u*)) is indeed monotone nonincreasing for all t>=to and for all x*. [I 

Note that S attains a strong local minimum at x* if S, does-consequently 
this condition may usually be verified without explicit knowledge of S. Note also 
that the fact that x* is an equilibrium point itself follows if (i), (iii), (iv), (v) are 
satisfied and if S is continuous and attains a strong local minimum at x*. 

The consideration of the storage function is an extremely useful tool in stability 
investigations and by properly choosing the supply rates one may indeed obtain 
an interpretation for most of the existing stability criteria. In constructing a 
storage function it is natural to proceed to the evaluation of either the available 
storage or the required supply. These however lead to variational problems and 
it is only in exceptional circumstances that one may solve such problems, par- 
ticularly if the dynamical system 2: is nonlinear. The concept of interconnected 
systems becomes in fact very useful in this context: it allows one to construct 
storage functions which correspond to neither the available storage nor the 
required supply, and which may be constructed by solving variational problems 
for-presumably less involved-subsystems of the original dynamical system 2:. 
This procedure will be illustrated in Section 7.2. 

One may refine the basic result of Theorem 6 in several directions. Some of 
these are briefly discussed below: 

(i) roughly speaking local minima of the storage function define stable 
equilibria and vice versa; 

(ii) under appropriate additional hypotheses one may conclude that all 
trajectories actually approach the point of minimum storage. These 
additional hypotheses require the system to be strongly dissipative in the 
sense that no trajectory (other than the equilibrium) is free of dissipation. 
This strong form of dissipation is studied in [11]. We note here that one 
will usually not obtain S to be negative definite but merely semi-definite. 
The so-called invariance principles [24, 25] are thus very useful in estab- 
lishing asymptotic stability in this context; 

(iii) local maxima of the storage function will define an unstable equilibrium 
if all trajectories in its neighborhood involve some dissipation; 

(iv) if w(u*, y)--O for all qr Y, and if the system is lossless, then local minima 
and maxima of the storage function define stable equilibra. 

6. Nonstationary Dynamical Systems 
All of the above theory and results have been based on the hypothesis that 

the dynamical system under consideration is stationary. This stationarity has 
been postulated on two distinct levels: 

(i) it has been assumed that the dynamical system ~ is itself stationary, i.e., 
the constitutive equations defined by the maps ~b and r are invariant 
under shifts of the time axis; 
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(ii) the storage functions have been assumed to be time-invariant, i.e., the 
function S did not involve an explicit time dependence. 

Although it may not seem so at first glance, assumptions (i) and (ii) are separate 
since (i) mainly refers to input]output stationarity whereas (ii) supplements this 
with internal stationarity. There are important types of physical systems (e.g., 
rotating electrical machines) which are externally stationary but internally time- 
varying. 

We view stationarity postulates as an a priori qualitative assumption imposed 
on the mathematical model of the dynamical systems under consideration. In 
this section we will indicate the modifications required to extend the above 
definitions to time-varying systems. Once the conceptual framework is appro- 
priately expanded, one may indeed generalize the results to the time-varying case 
without difficulty. 

1. The following definition generalizes Definition 1. In contrast with most 
similar definitions which have appeared in the literature we allow for the state 
space itself to be time-varying. 

Definition 1'. A (continuous) dynamical system, X, is defined through the sets 
{U,, all, Yt, q/, Xt}, t~R,  and the maps q~t,,to, (tl, to)~R~, and r,, t~R. These 
satisfy the following axioms: 

(i) q / is  called the input space and consists of a class of functions u(t), t sR ,  
taking their values at time t in the set of input values U,; 

(ii) q/ is called the output space and consists of a class of functions y(t),  
t~R,  taking their values at time t in the set of output values Yt; 

(iii) Xt is called the state space at time t~R; 

(iv) ~t, to is called the state transition function and maps Xto x q / in to  Xt,. It 
satisfies the analogous axioms of (iv)a, (iV)b, and (iv)o of Definition 1; 

(v) r t is called the read-out function and is a map from Xt x U t into Yt; 

(vi) the function rt(~b(t, to, Xo, u), u(t)) defined for t>to is the restriction to 
[to, oo) of an element of ~ .  

The solution of the problem of state space realization in terms of equivalence 
classes goes through unchanged. 

2. A (time-varying) dynamical system with supply rate at time t wt: U t x Yt ~ R  
is said to be dissipative if there exists a nonnegative function St: X t o R  +, called 
the storage function, such that 

t l  

Sto(Xo) + S wt(t) d t>  St1 (Xl). 
t o  

The available storage is defined by 
t t  

Sto, .(x) = sup - S wt(t) at, 
X "-~ tO 

t l  ~ t O  

whereas the definition of required supply necessitates again the notion of a point 
of minimal storage. Assume then that xt*~Xt minimizes St(x) over x~X t and as- 

23* 
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sume in addition that Sf(x*)= 0 (this postulate now involves more than simply 
adjusting an additive constant). The required supply then becomes 

to 

Sto,,(x)= inf S wt(t) dr. 
x*( tD- .x  t -1  
t - l  ~to 

The results of Theorems 1 and 2 follow with the obvious modifications in notation. 
The available storage and the required supply are thus bounds on the storage 
functions and are themselves possible storage functions. 

7. Applications 

In this section we shall present a series of applications which serve to illustrate 
the previous theoretical developments. 

7.1. Systems with a Finite Number of  Degrees of  Freedom 

Consider the dynamical system described by the set of first order ordinary 
differential equations 

~ = f ( x , u ) ,  y=g(x,u) 

and assume that the supply function is given by 

w = (u, y )  = u' y (prime denotes transposition). 

Here, x e R  n, u, yER '~, and it is assumed that f and g are Lipschitz continuous 
in x and u jointly. It is well known that this implies that the above differential 
equation has a unique solution for any x (to)e R ~ and any locally square integrable 
u(t). Moreover the resulting functions x(t) and y(t)  are themselves also locally 
square integrable. 

The above differential equation thus describes a dynamical system in the 
sense of Definition 1 with U = Y = R  ~, X = R  n, and q / = ~  the locally square 
integrable R~-valued functions defined on R. The differential equation itself 
defines the state transition map ~b whereas the relation y = g ( x ,  u) describes the 
read-out function r. Note also that the supply function is locally integrable for 
u~q /and  y ~ / .  

The problem at hand is (i) to determine conditions on f and g which make the 
dynamical system under consideration dissipative with respect to the given supply 
function and (ii) to discover the possible storage functions. If we restrict ourselves 
to sufficiently smooth storage functions then we are asking to find those func- 
tions S: R~---~R + satisfying 

d 
-d-i- s ( x )  = rx S(x)  . f (x, u) <__ ( u, y )  = (u,  g(x, u) ) 

for all x e R  ~ and ueR m. BROCKETT [26] has in fact proposed this as a definition 
of passivity. This equivalent statement hardly solves the problem. The question 
of dissipativeness is by Theorem 1 equivalent to whether or not 

inf ~ (u, g(x, u)) dr, 
ue~o  0 
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subject to the constraints ~=f(x ,  u); x(O)=xo, is finite for all xo~R n. The value 
of this infimum (which is seen to be nonpositive by taking u =0) yields the negative 
of the available storage function. This variational problem and the analogous one 
involved in the computation of the required supply are standard problems in 
optimal control and these techniques will be used in Part II to obtain some 
specific answers to the above questions. At the level of generality posed here it 
is impossible to obtain necessary and sufficient conditions on f and g for dis- 
sipativeness, but some interesting special cases offer a great deal of further insight: 

(i) Consider the particular case (corresponding to elastic systems and to 
capacitive networks): 

x = u ;  y=g(x) .  

In this case it is convenient to derive the conditions for dissipativeness directly 
from the dissipation inequality. Restricting ourselves again to sufficiently smooth 
storage functions (the available storage will in fact be smooth as a result of the 
assumption o n / a n d  g made earlier), we see that the dissipation inequality demands 
that there exists an S: R n ~ R + such that 

v~S(x), u_-<<u, g(x)) 

for all u6R m and x~R ~. This is the case if and only if the function g'(x) is the 

gradient of a nonnegative function. It is well known that this requires ag~(x) = 
axj 

O gj(x) This condition may be obtained in a different manner by noticing that 
~X i " 

| Xl 

Sw(t) dt= ~ g'(x)dx. The integral on the right is bounded from below for a 
o zo 
given Xo and xl only if it is path independent which in turn requires g'(x) to be 
the gradient of a real-valued function. 

The necessary and sufficient conditions for dissipativeness may thus be 
expressed in terms of g (x) by: 

(i) agt(x) _ ag~(x). 
axj ~xi ' 

(ii) the path integral P(x)= Sg'(x) dx is bounded from below. 

Here, x* is arbitrary and the function P differs from S only by an additive con- 
stant. It thus follows that the system is dissipative if and only if it is lossless. The 
storage function is thus unique and plays the role of a potential function since 
it determines the dynamical equations by 

~=u; y=v~S(x). 

Note also that in this case one obtains reciprocity (condition (i)) as a result of 
dissipativeness. This is by no means a general property of dissipative systems 
however. 
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(ii) If we add "resistive" terms to the equations of motion studied in (i) then 
we obtain the dynamical system 

~=u;  y = g l ( x ) + g 2 ( u ) .  

If we assume (without loss of generality) that gs (0)= 0 and concentrate again on 
sufficiently smooth storage functions then the dissipation inequality demands that 
there exists an S : R " ~ R  + such that 

VxS(x ) �9 u<_(gl (x)+gs(u) ,  u )  for all x~R" and ueR "~. 

This inequality is satisfied if and only if 

g~S(x)=g'l(x)  for all xeR"  and (u, gs(u) )>0 for all u~R m. 

The conditions for dissipativeness are then those obtained in (i) augmented by 
the additional requirement (u, gs (u))>0. The storage function is again unique 
(although the system need not be lossless) and is up to an additive constant given 

by the path integral ~ g'l ( x ) d x .  The dissipation function (also unique) is given 

by d(x, u) = (u, gs (u)). Notice that as a consequence of dissipativeness, we obtain 
reciprocity of the "elastic" terms (g~ (x)) but not of the "resistive" terms (gs (u)). 

The system studied here may be considered as the interconnection of the 
three systems: 

Zl: x l = u l ;  y l = g l ( x l )  with 

Zs: ys=gs(u2) with 

~3:Y3=Y4 = - u ;  y = u 3 + U 4  w~h 

with the neutral interconnecfion constraint 

y s = - U l ;  y 4 = - u 2 ;  

w1=(ul, yl), 

w2=(u2, Y2), 

wa=(u3, y3)+(u4, y4)+(u,y) 

U3=Yl; Ua :y2 .  

The storage function (but not its uniqueness) follows directly from here. The 
variables with subscripts represent the interconnecting inputs, outputs, and supply 
rates. 

(iii) Consider the system described by the equations (u2 is scalar-valued): 

11 = u l  ; Yl  = g l  ( x l ,  x2) 

X2 :f2(Xl, X2' U2); Y2 = gZ(xl, X2, U2)" 

A simple calculation shows that dissipativeness implies that 

V~ 1 S(xl, x2)=g'l (xl, xs) 
and 

V~ 2 S(x t ,  xs) "f2 (xl, Xs, Us)_-< Us gs(Xl, Xs, Us). 

for all xl, xs, and Us. Thus only part of the dependence of the storage function on 
the state vector is determined by the dynamical equations. 

The above dynamical system is a particular ease of the one studied by COLE- 
MA~ [27] and GUgTIN [28] (see [2], Chapter 3). These authors obtained in fact 
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very similar results. It should be realized however that for dynamical systems 
described in this amount of generality one needs a lot more information about 
the physics of the situation in order to obtain a unique storage function. 

7.2. Stability of  Feedback Systems 

Consider the dynamical systems Z1 and z~ 2 and assume that U 1 = f 2 : Y1 = Y2 

are inner product spaces. Assume now that 2~ a and 1;2 are interconnected via the 
constraint u2=y ~ and u l = - Y 2 .  This results in the feedback system shown in 
Figure 2. 

Fig. 2. Feedback system 

The theory of dissipative systems discussed above offers a powerful method 
for investigating the stability of this feedback system. Assume that we associate 
the supply rate wl(ul,  Yl) with ~1 and the supply rate w2(uz, Yz) with X2. If wl 
and w2 are such that w~(u, y )+wz(y ,  - u ) = 0  for all u and y, then the feedback 
system may be considered as an interconnected system with the neutral inter- 
connection constraint: u2=y~, Ul = - Y z .  Thus in order to prove stability it then 
suffices to show that ~ is dissipative with respect to wl and that 2~ 2 is dissipative 
with respect to wz (or, equivalently, with respect to ~ wz for some a>  0). 

It may be verified that essentially all of the frequency-domain stability criteria 
which have recently appeared in the literature [17, 18] are based on this principle. 
Particularly important choices of the supply rates are w~=lluxll2-11Yxll 2, 
w2 = II uz II 2_  II Y2 II z; w~ = (/gl, y l ) ,  w2 = (u2,  Y 2 ) ,  and w 1 = ( u  1 -~ ayl,  ul + by l ) ,  

( 1 1 ) 
wz= - a b  u 2 -  Y2, uz---ff Y2 �9 The stability theorems resulting from these 

choices of the supply rates are known as the small loop gain theorem, the positive 
operator theorem, and the conic operator theorem. The interpretation of these 
stability principles in terms of dissipative systems gives further insight in these 
results and unifies the existing conditions. 

As an example, consider the autonomous dynamical system described by the 
set of first order ordinary differential equations: 

X: x = A x - B f ( C x )  

where x ~ R  n, f :  R '~--, R m, and A, B, and C are matrices of appropriate dimensions. 
We assume again that f is Lipschitz continuous. Let f(O)=O; then the trajectory 
x( t )  =0 is a solution to this differential equation and the stability properties of 
this solution have been the subject of a number of recent papers in the control 
theory literature. Particularly the construction of Lyapunov functions is a matter 
of great practical importance. The best known result in this area is the so-called 
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Popov criterion [29, 30] which answered a long-standing question known as the 
" L u r ' e  problem".  We will reproduce this result for a representative case using 
the theory of dissipative systems. In doing so we obtain a whole class of Lyapunov 
functions in a systematic manner and extend the results recently obtained in [11]. 

We begin with viewing this dynamical system as the feedback interconnection 
of two dynamical systems, namely: 

Zl: xl=Axl+BUl; yl=CAxl+CQxl+CBul 
and 

2:2: ~2=-Qx2+u2; y2=f (x2)  

with the interconnection constraint ul = - Y2; u2 = Yl- The matrix Q is an arbitrary 
(n • n) matrix which features in the conditions for stability. I t  is clear that the 
above interconnection constraint defines a neutral interconnection with respect 
to the supply function w~=(ul, yl) and w2=(u2, Y2). This interconnection 
leads to a "c losed"  system since we only have interconnecting, but no external, 
inputs and outputs. I t  is a simple matter  involving only algebraic manipulations 
to show that the interconnection of Z~ and Z 2 via the given interconnection con- 
straint yield xl(t)=x(t ) and x2(t)=Cx(t) provided the initial conditions are 
chosen as x 1 (0)= x (0) and x 2 (0)= C x (0). The philosophy behind this equivalence 
is shown in Figure 3. 

~x_(o) 
~ Glsl=_Clls-A) -~ B ~--~ 

~ J 

~x~(o) 

Z~ x2(o) 
Fig. 3. Illustrating the interconnected system studied in Section 7.2 

We now postulate the conditions for stability. These are :*  

(i) {A, B, C} is a minimal realization of G (s)= C ( I s - A ) - 1 B  

* Re I{A} denotes the real part of an arbitrary eigenvalue of A, the matrix inequality P > 0  
indicates that the Hermitian matrix P is nonnegative definite, and "minimal realization" is 
system theory jargon which will be explained in detail in Part II. Positive real functions have 
been studied, particularly in the context of electrical network synthesis, and will be discussed in 
Part II. 
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(ii) (ls+ Q) G(s) is a positive real function of s 

(iii) f is the gradient of a nonnegative function, i.e., 

OA(6) _ o f j ( o )  

t~ trj atr i 
for all a~R m, 

.= 

and the path integral J f '  (o) do > 0 for all z ~ R m 
0 

(iv) i f ( a )  Q a ~ 0  for all a e R  m. 

This stability claim will be verified with the aid of a suitable Lyapunov function. 
The idea behind the above conditions is that they make both Z1 and Z2 into 
dissipative systems. In fact, conditions (i) and (ii) ensure that 2; 1 is dissipative 
with respect to w~=(ul, Yl). The available storage x'Qax and the required 
supply x'Qrx are positive definite quadratic forms. These functions and the 
other possible storage functions which are quadratic will be the subject of study 
in Part II of this paper. In order to verify that Z2 is dissipative with respect to 
w2 = ("2, Y2), we shall use conditions (iii) and (iv). Consider thus 

T2 

~/= - i n f ~  (u2, y2)dt 
TI 

subject to ~ /2=-Qx2q-u2;  y2=f(x2). We may eliminate u 2 and Y2 from this 
integral in terms of x2. This yields 

f x ~ ( r 2 )  i2f,(x2(t))Qx2(t)dt}. rl= - inf  ~x2(~rl)f' (x2)dx2 +rl 

Note that the first integral is independent of path by (iii) and the second one has 
an integrand which is always nonnegative by (iv). This last integral may be made 
arbitrarily small in the evaluation of the available storage and the required 
supply. The dynamical system 2~ 2 is thus dissipative and its storage function is 
uniquely given by 

X2 

S2 (x2) = SI'(r da > O. 
0 

The interconnected system is hence dissipative and has Sl(xl)+S2(x2) as an 
admissible storage function. Restricted to initial conditions x2(O)=Cxl (0), this 

C x  

statement implies that the function x'Qsx+ Sf'(r is nonincreasing along 
0 

solutions of 27 whenever Q,=Q~ defines a quadratic storage function of Z 1. 
Since Qs = Q~ > Qa = Q~" ~ e l  for some 8 ~ 0 it follows that this Lyapunov function 
establishes the stability of the solution x ( t )=0 .  By strengthening condition (ii) 
to include Re 2 {A} < 0 we may in fact show, using this Lyapunov function, that 
all solutions approach their equilibrium solution x = 0 as t ~ oo. 
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7.3. Electrical Networks 

Consider an electrical network with n external ports and with a number of 
internal nodes and branches. We shall denote the external voltages and currents 
by the n-vectors Vand I, respectively. Assume that the network contains resistors, 
capacitors, inductors, and lossless memoryless elements (e.g., transformers, 
gyrators, etc.) which need not be specified further. Let nR, nc, and nL denote the 
number of resistors, capacitors, and inductors, and denote the voltage across the 
elements and the current into these elements by the ns-vectors VR, Is, the nc- 
vectors Vc, lc, and the nL-vectors VL, IL respectively. We take the sign con- 
ventions shown in Figure 4. 

Ck 

Y 
n c 

capacltor 
ports 

l~kl§ VCk - 

]R k IR k | ? } 

R ~ Vo, I R / v i  I network 
k~ VR k ~,resistor'~'R k [ wi thout 

I _ 

't L i ILk + VL k - 

Y 
n L i nduc to r  ports 

ILk 

Lk 

Fig. 4. The electrical n-port considered in Section 7.3 

n 
external 

ports 

We now turn to the question of what should be considered inputs and outputs. 
This is a somewhat annoying question since what are the most convenient varia- 
bles to work with depends on the network under consideration. In fact it has 
recently become apparent that the so-called scattering representation [31] (input= 
v+pi; ou tpu t=v-p / ,  p>0) is by and large the most convenient model to con- 
sider. We shall consider here a somewhat simpler case and assume that [34] 

(i) Vis the input and I is the output; 
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(ii) the characteristic of the k tra resistor is given by 

Va k = Rk(IRk) IRk with Rk > 0. 

This leads to the relation VR=R(IR)IR. 

(iii) the characteristic of the k th capacitor is given by 

dV k 
Ic~=Ck(Vc,,) ~ with Ck>8>O. 

This leads to the relation Ic= C(Vc) dVc 
d t"  

(iv) the characteristic of the k th inductor is given by 

dlLk 
VL~ = Lk(IL~) ~ with Lk > 8 > O. 

dIL 
This leads to the relation VL=L(IL) dt " 

(v) the part of the network which neither involves dissipation nor memory 
defines an instantaneous relation from the voltages across the external 
ports, V, the currents into the resistor ports, I t ,  the voltages across the 
capacitor ports, Vd, and the currents into the inductor ports, It ,  into the 
currents into the network at the external ports, I, the voltages across the 
resistor ports, V~, the currents into the capacitor ports, Vc ~, and the 
voltages across the inductor parts, V~. It is also assumed that (V, I ) +  

v b + ( v L  ' ' Ic> + ( l , ,  v/> = o. 

The interconnected network may thus be considered a dynamical system with 

input g, output I, and state - .  It is a neutral interconnection of dissipative 

systems with interconnection constraint gR=V~, Vc=g~, VL=V~, IR=--It ,  
Ic = --I~c, and It. = - I [ .  The external supply rate is (V, I )  and the internal supply 
rates are (IR, V~), (gc, Ic), and (IL, VL). The stored energy in the capacitors 
and inductors is uniquely defined by 

with 

nc  hi.., 

E (Vc, IL) = ~ Ek (Vk) + ~ E, (I,) 
l 1 

V c  k ILk  

E~(Vck) = ~ vCk(v)dv and E(ILk)= ~ iLl,(i)di. 
0 0 

Thus in standard electrical networks no ambiguity in the stored energy function 
arises. This is an immediate consequence of the fact that we are able to consider 
these systems as an interconnection of very simple subsystems in which the ele- 
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ments with memory are lossless. The individual dynamical subsystems involving 
memory are in fact described by first order scalar differential equations. 

7.4. Thermodynamics 
Consider a thermodynamic system at a uniform temperature. Assume that 

the mathematical model used for describing this system is in the form of a dynami- 
cal system in the sense of Definition 1 and that the outputs to this dynamical 
system 2: contain (possibly among other things) w, the rate of work done on the 
system, q, the rate of heat delivered to the system, and q/T where T denotes the 
temperature of the system. We assume that every admissible input and every 
initial state yield functions w, q, and q/T which are locally integrable. 

The first and the second laws of thermodynamics may then be formulated by 
stating that a thermodynamic system is dissipative and lossless with respect to 

q 
the supply rate (w + q) and dissipative with respect to the supply rate ---~-. In 

terms of our definitions this implies the existence of two nonnegative functions E 
and - S  defined on the state space X of 2: such that every motion with xl = 
r (tl, to, Xo, u) yields 

tl 

E(xo) + S (w(t) + q (t)) d t = E(xl)  (Conservation of Energy) 
to 

i ! ~ d t < S ( x l )  (Clausius' inequality).* S(xo)+ 

The function E is called the internal energy and S is called the entropy. 

It follows from the results obtained earlier that E is uniquely defined once the 
equations of the dynamical system are given but that in general there will be 
many possible entropy functions. Two particular possibilities, So and S,, may be 
computed a priori via the variational problems 

and 

t; a ( t )  _ 

S,(x)= - supx_. Jo-~-O-(t) at 
t ~ O  

o q(t) _ 
St(X)=-- ~*-*~inf -tJ_x--~-~at 

t-l_~O 

where x* is a point of maximal entropy normalized to S(x*)=0. We may also 
conclude that, whatever the actual entropy may be, it satisfies the a priori ine- 
quality Sr<=S<Sa<=O. For reversible thermodynamic systems, i.e., when 2: is 

* DAY [35] has recently written a paper in which he shows how to replace this axiom by 
one involving the heat delivered and absorbed and the maximum and minimum temperature 
attained. 
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q 
lossless with respect to --~-- as well, the entropy is given unambiguously by 

S=S,,= S, provided the state space of X is reachable from x* and controllable 
to x*. 

It should be emphasized that this ambiguity in the entropy function for 
irreversible thermodynamic systems is fundamental: the dynamical equations do 
not provide enough information to define the entropy uniquely. This difficulty 
has long been advertised by MEIXNER [32]. 

8. Conclusions 

In the first part of this paper we have attempted to outline a general theory 
of dissipative dynamical systems. The mathematical model employed is a so- 
called state space model in which the map which generates outputs from inputs 
is viewed as the composition of a state transition map and a memoryless read-out 
function. This type of model is standard in control theory and dynamic estimation 
theory and it is argued that this model offers conceptual advantages for de- 
scribing general physical systems with memory. 

The definition of a dissipative dynamical system postulates the existence of a 
storage function which satisfies a dissipation inequality involving a given function 
called the supply rate. In many applications one knows from physical considera- 
tions that a storage function exists but it is often a difficult task to determine it. 
It is then shown that this difficulty is genuine and that the dynamical equations 
are insufficient to specify the storage function uniquely. However, the storage 
function satisfies an a priori bound, i. e., it is bounded from below by the available 
storage and from above by the required supply. The available storage is the 
amount of internal storage which may be recovered from the system and the 
required supply is the amount of supply which has to be delivered to the system 
in order to transfer it from a state of minimum storage to a given state. Both 
these functions are themselves possible storage functions and their evaluation 
may be posed as variational problems. 

These ideas were then applied to interconnected systems and it was established 
that for interconnected systems with interconnections which instantaneously 
redistribute the supply (the so-called neutral interconnections), the sum of the 
storage functions of the individual subsystems is a possible storage function for 
the interconnected system. 

The stability properties of dissipative systems were then investigated and it 
was shown that states for which the storage function attains a local minimum are 
locally stable and that the storage function is a suitable Lyapunov function. 

Part II of this paper will be devoted to an examination of linear systems with 
quadratic supply rates. 

This research was supported in part by the National Science Foundation under Grant No. 
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